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Abstract

In this paper, long memory behavior of the energy consumption by source of 
the United States has been examined using the fractional integration technique 
for the three conventional cases of no regressors, an intercept, and an intercept 
and a linear trend. In addition, this study extends majority of past studies by 
considering the effects of seasonality and structural breaks. Using monthly data, 
it is found that across all the sources considered, energy consumption exhibits 
long memory with the degree of persistence largely ranging between 0 and 1. 
Also, the estimated results of the models with seasonality effect and structural 
breaks show that the energy consumption series have significantly strong seasonal 
pattern and autoregressive components, and the presence of structural breaks 
significantly alter the degree of persistence of most of the energy sources. The 
reports of this study have serious policy implications in the aspect of energy 
consumption mix, energy consumption efficiency and environmental concerns. 
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Resumen

Este trabajo examina el comportamiento de memoria larga del consumo de 
energía en Estados Unidos utilizando la técnica de integración fraccional. Este 
estudio extiende trabajos pasados incluyendo un análisis de estacionalidad y 
de quiebres estructurales. Utilizando datos mensuales se observa que todas las 
fuentes de consumo de energía consideradas exhiben memoria larga, estacio-
nalidad y quiebres. 

Palabras clave: Memoria larga, integración fraccional, quiebres estructurales.

Clasificación JEL: C22.

1.	 Introduction

Till date, energy, either renewable or non-renewable, is a factor whose 
importance cannot be undervalued in almost all contemporary economies. In 
fact, it can trigger economic crises depending on the level of dependence of an 
economy on its consumption or on it as a factor input into production processes. 
This is because there is hardly any sector of the economy that can stand inde-
pendent of the energy sector. In light of this, this study assesses long memory 
behavior of energy consumption of the United States across various sources. 
This is carried out within the fractional integration framework which helps to 
determine the different degrees of persistence exhibited by the energy sources. 
This study further accounts for seasonality and structural breaks in the models. 

Meanwhile, different degrees of persistence of energy consumption indicate 
different meanings, and thus have different policy implications. Critically, the 
higher the degree of persistence, the more difficult it is for the energy consump-
tion to revert back to its predetermined or average target if any exogenous shock 
occurs. By implication, a tougher policy stance is required to control the effect 
of exogenous shock on the energy source whose consumption exhibits higher 
degree of persistence. For instance, given that the integration order is defined 
as d, a zero value indicates stationarity while a value of 1 shows the presence 
of unit root. Hence, if the integration value reveals that energy consumption is 
stationary (d = 0), the effect of shocks to energy consumption will be temporary 
and no policy, per se, is required to establish mean reversion (see Fallahi et al., 
2016). One can then go ahead to forecast the future values of energy consump-
tion using its past values (see Apergis et al., 2010; Lean and Smyth, 2009). If, on 
the other hand, unit root is contained in the energy consumption series (d = 1), 
the effect of shocks is rather not transitory, but permanent. Thus, public policy 
may not be able to reverse the effects of the shocks since there appears to be 
no trend path to return to.
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Furthermore, energy has continually maintained a strong relationship with 
other sectors of the US economy. As this is true, whatever happens to energy 
consumption will be felt by other sectors of the economy, especially those that 
directly depend on the energy sector, such as the manufacturing, industrial, 
commercial and residential sectors. Intuitively, how much other sectors of the 
economy and several important macroeconomic indicators will be affected is a 
function of the level of persistence of the effect of shocks on energy consump-
tion. The level of persistence in energy consumption is transmitted to other 
economic sectors and macroeconomic aggregates (see Lean and Smyth, 2009; 
Gil-Alana et al., 2010; Barros and Gil-Alana, 2011).

However, using the fractional integration approach, there are no much stud-
ies on the persistence of energy consumption by source in the US despite the 
fact that energy is a crucial factor in the country. The available studies for the 
country either focused on a single disaggregate energy type or a sector (see, 
for instance, Lean and Smyth, 2009; Gil-Alana et al., 2010). Also, accounting 
for seasonality and structural breaks are major deficiencies of the available few 
studies. Only Gil-Alana et al. (2010) gave attention to seasonality, while no 
existing studies on the degree of persistence of the US energy consumption by 
source allow for possible structural breaks in the series. This gap is thus aimed 
to be filled by this study by examining long memory in energy consumption by 
source of the US via the adoption of the fractional integration framework that 
is modified to include seasonality effect and structural breaks.

The rest of the paper is structured in the following order. Section 2 reviews 
past studies briefly. Section 3 describes the data and preliminary analyses. 
Section 4 gives the outlines of the methodology. Section 5 discusses the empirical 
findings. The closing remarks and relevant policy implications are highlighted 
in the Section 6.

2.	 Past Studies in View

Studies on the assessment of stationarity properties of energy indicators are 
not scarce. This is because, apart from the need to examine their stationarity 
behaviour for appropriate policy formulations and implementations following 
the occurrences of shocks, certain multivariate analyses involving time series and 
panel data require that the variables be checked for unit root in order to determine 
the appropriate estimation technique. For instance, the Ordinary Least Square 
(OLS) technique breaks down if the series under consideration observe mixed 
integration orders, i.e. I(0) and I(1). In this case, the Autoregressive Distributed 
Lag (ARDL) model is the most appropriate.

So, aggregate and disaggregate energy indicators, such as energy consump-
tion, energy prices, energy production have been assessed for unit root in the 
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literature using univariate parametric models (for instance, see Shahbaz et al., 
2014; Joyeux and Ripple, 2007; Lee and Chang, 2008, Kahia et al., 2017; 
Narayan and Smyth, 2005; Esen and Bayrak, 2017; Dogan, 2014; Pereira and 
Belbute, 2014; Fasanya et al., 2018; Mishra et al., 2009; and Salisu et al., 2017, 
among others). The studies are diverse between those that consider unit root 
models with and without structural breaks, as well as those that make use of time 
series and panel data. As also summarily reported by Belbute (2016), evidences 
of unit root are concluded by the parametric univariate unit root tests when no 
structural breaks are considered. On the other hand, stationarity is established 
by unit root models with structural breaks. In the case of panel unit root models, 
the null hypothesis of unit root is rejected in most cases, thus concluding that 
panel energy consumption data are largely stationary.1

From the foregoing, two facts can be safely inferred. Firstly, studies on the 
stationarity properties of energy consumption have not reached any consensus, 
although majority conclude non-stationarity depending on whether structural 
breaks are considered or not, and whether the variables are time series or panel 
data. However, the inability of most of these studies to establish stationarity is 
due to the poor power of the parametric univariate unit root models to reject 
the null hypothesis in the presence of fractional integration, structural breaks, 
seasonal effects, etc. (see Gil-Alana et al., 2010; Apergis and Payne, 2010 and 
Narayan and Smyth, 2007). Secondly, Diebold and Rudebush (1989) and Belbute 
(2016) soundly reveal that the unit root models only explain that the past values 
of a variable determine its present behaviour, but are deficient in indicating how 
long the influence lasts. This is because the conventional unit root models only 
indicate if the series is I(1) or I(0). They are unable to indicate if the integration 
order is not strictly 0 and 1. Thus, the ability to understand the different degree 
of persistence is limited.

In light of these two facts, empirical studies have been driven towards the 
likelihood of economic variables to observe varying persistence levels. In order 
words, integration order of variables can be any number on the number line, 
not necessarily an integer. This thus favours the fractional integration technique 
in the assessment of long memory in economic variables. Unfortunately, this 
technique has gained more prominence only in major macroeconomic indicators 
like national output/gross domestic products, unemeployment, exchange rates, 
inflation, stock market indices, consumption, etc. (see Diebold and Rudebush, 
1989; Diebold et al., 1991; Caporale and Gil-Alana, 2008; Gil-Alana, 2002, etc.).

However, only in recent times has the literature been witnessing studies 
examining long memory in energy indicators. These studies include Lean and 
Smyth (2009), Gil-Alana et al., 2010; Gil-Alana, 2012; Apergis and Tsoumas 
(2011), Barros et al. (2012) and Elder and Serletis (2008). The studies largely 
find that the energy indicators exhibit long memory with the level of persistence 
ranging between 0 and 1.

1	 See Smyth (2012) for a comprehensive review of studies on the stationarity properties of 
energy consumption and production.
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This paper therefore parallels these few studies in the energy literature by 
examining long memory in the energy consumption of the US across various 
sources within the fractional integration framework. It extends majority of these 
studies by giving consideration to structural breaks and seasonality. Fractional 
integration methods can also be bias if structural breaks and seasonal fluctua-
tions are present, but are not accounted for.

3.	 Data and Preliminary Analyses

Monthly frequency data for nine energy consumption sources in the United 
States are considered for analysis. The energy consumption sources are coal, 
natural gas, petroleum, nuclear, hydroelectric, geothermal, biomass, solar and 
wind. The data spans from January, 1973 to August, 2018, except for solar 
(December, 1983 to August, 2018) and wind (January, 1983 to August, 2018). 
Also, for the sake of analysis, natural logarithm is taken for the data, except 
solar and wind due to the zero energy consumption values recorded for some 
months. The United States Energy Information Administration (US-EIA) is the 
source of all the data and they are measured in Quadrillion Btu.

Next, necessary preliminary analyses results are turned to. Starting with the 
descriptive statistics of the data (see Table 1), petroleum is the most averagely 
consumed, followed by natural gas and coal. These three energy sources par-
ticularly fall under the non-renewable or fossil fuel energy type. On the other 
hand, the renewable energies are insignificantly consumed compared to the fossil 
fuels, but are on the increase in recent times due to their low carbon emission 
and global warming. Also, the data are not too widely dispersed, as revealed by 
the standard deviation statistic, but still, the dispersion is higher for the fossil 
fuels. The Jarque-Bera statistic further shows that only petroleum consumption 
is normally distributed.

Table 2 displays the results of the unit root tests. Intentionally, three different 
unit root tests are carried out in order to ensure robustness since they conclude 
stationarity under different assumptions and they differ in their power to reject 
the null hypothesis. For the case of absence of structural breaks, Augmented 
Dickey-Fuller (ADF) and Philip-Perron (PP) tests due to Dickey and Fuller 
(1979) and Philips and Perron (1988) respectively are employed. The results 
show evidence of non-stationarity in most scenarios. These unit root tests have 
been proved to be bias in the presence of structural breaks in the series, as mostly 
common to high frequency time series data (Fasanya et al., 2018). Hence, the 
unit root test with structural breaks due to Perron and Vogelsang (1993) unit 
root test is carried out. Still, the results are mixed, but vary relatively from the 
outcomes of the tests without structural breaks. For instance, the fossil fuels show 
stationarity under the unit root models with intercept, and intercept and trend, 
but non-stationarity is the case under the unit root test with structural breaks. 
This shows the need to account for structural breaks, on one hand. On the other 
hand, the inability of the tests to yield a conclusive report may be due to their 
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TABLE 1
STATISTICAL PROPERTIES

Energy Source Mean Maximum Minimum Std. Dev. Jarque-
Bera Obs.

Coal 1.5244 2.1335 0.8442 0.2971 18.7684 548

Natural Gas 1.8497 3.4200 0.9601 0.4530 29.6624 548

Petroleum 2.9387 3.5698 2.2281 0.2482 5.9319** 548

Nuclear 0.5043 0.7808 0.0621 0.2049 52.6428 548

Hydroelectric 0.2382 0.3574 0.1457 0.0440 11.5639 548

Geothermal 0.0118 0.0199 0.0014 0.0055 62.4293 548

Biomass 0.2623 0.4469 0.1149 0.0805 23.8692 548

Solar 0.0113 0.1067 –0.0000 0.0177 2208.0640 416

Wind 0.0411 0.2514 0.0000 0.0629 203.1273 428

** indicates the non-rejection of the null hypothesis of normal distribution of the series at 5% 
significance level.

TABLE 2
UNIT ROOT PROPERTIES

Energy Source

Tests without Breaks Test with 
Breaks

ADF PP Perron-
Vogelsang

None Const. Trend None Const. Trend Const. Trend

Coal I(1) I(1) I(1) I(1) I(0) I(0) I(1) I(1)

Natural Gas I(1) I(1) I(1) I(1) I(0) I(0) I(1) I(1)

Petroleum I(1) I(1) I(1) I(1) I(0) I(0) I(1) I(1)

Nuclear I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)

Hydroelectric I(1) I(0) I(0) I(1) I(0) I(0) I(0) I(0)

Geothermal I(0) I(1) I(1) I(0) I(1) I(1) I(0) I(0)

Biomass I(0) I(1) I(1) I(1) I(1) I(0) I(1) I(1)

Solar I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1)

Wind I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1)

I(0) and I(1) respectively indicate stationarity at level and first difference.

poor performance if the series observe fractional integration and seasonality 
(see Gil-Alana et al., 2010). Hence, the non-seasonal and seasonal fractional 
integration models are implemented.
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In order to have a foresight of the likely presence of seasonality effect in 
the energy consumption variables, seasonal graphs are constructed to show 
the variations in the mean energy consumption across months. Figure 1 shows 
significant differences in the energy consumed. Seasonality is more feasible for 
coal, natural gas, petroleum, nuclear electric power and hydroelectric power. 
It is mild for geothermal and biomass, while the early years of solar and wind 
indicate no seasonality.

4.	 Methodology

Following the empirical knowledge that the degree of differentiation of 
economic series can be any fractional number other than a real integer, the frac-
tional integration methodology is favoured in this study. The baseline fractional 
integration model is started with, and it is specified thus:

(1) yt = ′γ zt + xt ;   t = 1, 2, …, n

where the observed time series is yt, γ  is the vector of unknown coefficients 
and zt is the vector of deterministic factors of the process yt. The deterministic 
factors may include an intercept, a linear time trend and structural breaks. 

The I(d) or fractionally integrated model of order d   xt ~ I d( )( )  is of the form:

(2) 1− L( )d xt = µt

where the lag operator, defined as L xt = xt–1, is L, d is a real number which may 
take up a fractional value and µt  is assumed to follow a I(0) process, i.e. white 
noise or covariance stationary process.

The expansion of (1–L)d in equation (2) can be binomially expressed in 
terms of infinite order, thus reflecting a slow and monotonic declining weights. 
It is given thus:

(3) 1− L( )d =
j=0

∞

∑
d

j
⎛
⎝⎜

⎞
⎠⎟
−1( ) j Lj = 1− dL + d d −1( )

2!
L2 − d d −1( ) d − 2( )

3!
L3 +…

Therefore,

(4) 1− L( )d xt = xt − dxt−1 +
d d −1( )

2!
xt−2 −

d d −1( ) d − 2( )
3!

xt−3 +…

d is the fractional integration order. It indicates the extent of persistence of the 
series being considered. Specifically, higher value of the d estimate implies a 
greater persistence level of the series. In particular, a value of d below the unit line, 
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but above 0, i.e. 0 < d < 1, would mean that the series will observe a reversion to 
its mean value in case there is an occurrence of shocks. By further implication, 
this implies that the series long memory exhibit long memory behaviour, but 
the effects of shocks are transitory as they die out hyperbolically (slowly) in the 
long run. Within the 0 and 1 range, it is also important to note that the rate at 
which the effect of shocks dies out differs. For instance, it dies out faster when 
0 < d < 0.5 than the case of 0.5 < d < 1. On the other hand, a value of d above 
the unit line, i.e. d ≥ 1, indicates non-stationarity and non-mean reversion in the 
series. Indeed, this scenario implies that the effects of shocks are permanent. 
Only if strong policies are put in place would there be mean reversion later 
in the long run. The other scenarios are when d = 1 (random walk), and d = 0 
(stationarity), thus making xt = µt .

Next, seasonality is considered in the fractionally integrated processes. 
Monthly energy consumption series cannot be strictly disassociated from sea-
sonal fluctuations, thus making studies like Gil-Alana and Robinson (2001) and 
Gil-Alana et al. (2010) to consider seasonality within the fractional integration 
framework. Therefore, the two standard approaches of accounting for seasonal-
ity in univariate models, such as the fractional integration model of this study, 
are used. The first assumes unit root with seasonal short-run dynamics while 
the other is based on the assumption that the model has seasonal unit root with 
non-seasonal AR(MA) components. These two seasonality assumptions are 
independently reflected in the fractional integration model.

In the case of unit root with seasonal short-run dynamics, for instance, the 
yt process is re-expressed as:

(5) 1− L( )d xt = µt ;  δ s L
s( )µt = εt

Where Ls becomes the seasonal lag operator given as Lsxt = xt−s , and δ s L
s( )  

represents the seasonal AR polynomial that explains the seasonal dynamics of 
the series in the short-run. Definitions of other parameters remain the same.

Based on equation (5), the specific model for the seasonal AR(1) process is: 

(6) yt = ′β zt + xt ;   1− L( )d xt = µt ; µt = ρsµt−12 + εt ;  t = 1, 2,…,n

The seasonal fractional integration model based on the second assumption 
gives:

(7) 1− Ls( )ds xt = µt ;  δ L( )µt = εt

where s indicates the 12 months in a year. Definitions of other parameters 
remain the same.

Also, the estimated model based on equation (7) for the non-seasonal AR(1) 
process is:
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(8) yt = ′β zt + xt ;   1− L( )ds xt = µt ; µt = ρsµt−1 + εt ;  t = 1, 2,…,n

Again, d and ds in equations (5) - (8) can be fractional values. If d is posi-
tive, then the process in equation (5) is said to exhibit long memory in the zero 
or long-run frequency, while the nature of the seasonality is described by the 
stationary AR model. More so, if d = 0, there is seasonal AR process, but unit 
root is the case if d = 1. Considering equation (6), seasonality exhibits long-run 
attribute while the short-run dynamics reveal non-seasonal AR process if ds is 
greater zero (ds > 0). However, if ds = 0, the outcome is non-seasonal AR, but 
if ds = 1, the model exhibits seasonal unit root.

In all, the approach of Robinson (1994) is employed to estimate the differenc-
ing parameter, d. It tests the H0 : d ds( ) = d0 dso( )  in equations (5) - (8) for any 
real value of d0(dso). The approach is superior to other techniques developed 
for evaluating the fractional integration properties of time series data because 
for at least two reasons. First, it allows the consideration of three standard 
scenarios in empirical analysis: (a) no deterministic terms, i.e. zt = 0, (b) an 
intercept, i.e. zt = 1, (c) an intercept with a linear time trend, i.e. zt = 1,t( ) '. In 
fact, the three standard cases can also be modified to include structural breaks, 
such as is done in this study.

Second, initial differencing of the series in order to induce stationarity is not 
required before estimation, as it works well for both non-stationarity (d, ds ≥ 0.5) 
and stationarity (d, ds < 0.5) cases of the series.

5.	 Empirical Results

The empirical results are uniquely presented under two scenarios. The first 
assumes the absence of structural breaks while the second accounts for structural 
breaks. For each scenario, non-seasonally and seasonally fractionally integrated 
models are estimated. In addition, across all the energy sources, three conven-
tional cases of fractional integration models- no deterministic terms, an intercept 
and a linear time trend- are considered. However, the best model based on the 
significance of the deterministic terms, has its estimates reported.

5.1.	 Model without Structural Breaks

Model without structural breaks is started with. Table 3 reports the results for 
of d when no seasonality is put into consideration. Except for natural gas whose 
value is significantly greater than 1, the estimates of all other energy consumption 
sources fall between 0 and 1. Specifically, the estimates of petroleum, solar and 
wind energy consumption are between 0 and 0.5 while the energy consumed 
of coal, hydroelectric power, nuclear electric power, geothermal and biomass 
are well over 0.5 but less than 1. The value of hydroelectricity, however, is 
still reasonably close to the threshold of 1 upon which unit root is established. 
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Thus, the unit root hypothesis is rejected for all the energy measures, except 
hydroelectricity. By further implication, they all exhibit long memory, imply-
ing that shocks to energy consumption will be permanent for natural gas. For 
the energy sources (petroleum, solar and wind) with 0.5 < d < 1 consumption 
will observe long memory with the effects of shocks reverting rather slowly. 
The remaining energy sources also exhibit long memory since 0 < d < 0.5, but 
shocks will be transitory as they revert very quickly; they are thus said to be 
stationary with long memory, and so require no strong government policies to 
tackle the effects of the shocks.

Next, seasonality is allowed for to assess long memory in the energy sources. 
The results for the two standard approaches of accounting for seasonality are 
reported. The estimates of d under the assumption that the residual term µt  ob-
serves seasonal AR(1) process. Table 4 displays the results. It is seen that there is 
a significant difference between the results and those reported in Table 3 (when 
no seasonality was considered). For instance the d estimates are smaller when 
seasonality is put into consideration, except for petroleum consumption. In fact, 
it is too glaring and surprising for natural gas whose value dropped from 1.4165 
to as low as 0.4689, thus implying that the persistence or long memory with no 
mean reversion explained to be exhibited by it is due to non-consideration of 
seasonality. When seasonality is accounted for, the true nature of natural gas 
consumption is that it is stationary mean reverting, thus implying that shocks 
will be temporary and revert very quickly. For others too, except petroleum, 

TABLE 3
COEFFICIENT ESTIMATES BASED ON MODEL 2

Energy Source d (95% confidence 
interval)

Intercept
(t-value)

Linear time trend
(t-value)

Coal 0.7125
(0.62, 0.81)

–0.3562
(–2.07)

--------

Natural Gas 1.4165
(1.30, 1.53)

0.5194
(1.82)

--------

Petroleum 0.4372
(0.39, 0.49)

–0.0606
(–1.98)

0.0002
(2.11)

Nuclear 0.7525
(0.68, 0.83)

–1.4580
(–6.19)

0.0038
(3.92)

Hydroelectric 0.9331
(0.83, 1.04)

-------- --------

Geothermal 0.7011
(0.51, 0.90)

–1.5526
(–7.92)

0.0043
(5.48)

Biomass 0.5644
(0.51, 0.62)

–0.6385
(–8.91)

0.0021
(8.54)

Solar 0.4994
(0.50, 0.501)

-------- --------

Wind 0.4992
(0.50, 0.501)

-------- --------
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TABLE 4
COEFFICIENT ESTIMATES BASED ON MODEL 6

Energy Source d (95% confi-
dence interval)

Intercept
(t-value)

Linear time 
trend

(t-value)

AR
(t-value)

Coal 0.6558
(0.58, 0.73)

–0.2633
(–1.92)

-------- 0.8763***
(38.20)

Natural Gas 0.4689
(0.38, 0.56)

0.2316
(2.08)

-------- 0.9370***
(59.90)

Petroleum 0.4612
(0.40, 0.52)

-------- -------- 0.7812***
(29.00)

Nuclear 0.7393
(0.66, 0.82)

–2.4603
(–7.85)

0.0042
(2.00)

0.7430***
(26.30)

Hydroelectric 0.7884
(0.70, 0.87)

-------- -------- 0.6972***
(22.70)

Geothermal 0.6494
(0.58, 0.72)

-0.4555
(–0.88)

0.0027
(2.73)

0.3103***
(8.13)

Biomass 0.5053
(0.44, 0.67)

–0.3412
(–1.91)

0.0016
(4.01)

0.5866***
(17.10)

Solar 0.4989
(0.50, 0.51)

-------- -------- 0.9872***
(198.00)

Wind 0.4257
(0.35, 0.50)

–0.0757
(–1.51)

0.0005
(5.27)

0.8091***
(18.30)

*** indicates significance at 1% critical level. Values in bold indicate significant alteration to the 
d estimates (level of persistence) from their original values in Table 3.

TABLE 5
COEFFICIENT ESTIMATES BASED ON MODEL 8

Energy Source d (95% confi-
dence interval)

Intercept
(t-value)

Linear time 
trend

(t-value)
AR

Coal 0.4737
(0.38, 0.56)

–0.2860
(–3.05)

0.0005
(1.76)

0.4062***
(7.87)

Natural Gas 0.6487
(0.51, 0.79)

-------- -------- 0.6194***
(14.40)

Petroleum 0.6338
(0.56, 0.71)

-------- -------- –0.3827***
(–7.86)

Nuclear 0.6205
(0.54, 0.70)

–1.4626
(–8.96)

0.0039
(6.19)

0.2800***
(5.27)

Hydroelectric 0.3034
(0.17, 0.44)

-------- -------- 0.6066***
(11.10)

Geothermal 0.7697
(0.68, 0.86)

–1.5525
(–6.19)

0.0042
(4.18)

–0.1265**
(–2.08)

Biomass 0.6585
(0.58, 0.74)

–0.6613
(–7.27)

0.0022
(6.37)

–0.1956***
(–3.57)

Solar 0.4953
(0.48, 0.51)

-------- -------- 0.8813***
(37.20)

Wind 0.4950
(0.48, 0.51)

-------- -------- 0.4819***
(10.90)

*** and ** indicate significance at 1% and 5% critical levels respectively. Values in bold indicate 
significant alteration to the d estimates (level of persistence) from their original values in Table 3.
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the reduced d estimates indicate that although long memory is still established, 
shocks will experience faster mean reversion unlike when no seasonality is 
accounted for. The high values and significance of the AR component further 
substantiates the need to account for seasonal effect.

Also, credence is given to seasonality in long memory assuming that the 
fractional integrated model has non-seasonality AR(1) µt . Once again, Table 5 
shows a significant drop in the estimates of d of most of the energy sources. 
However, two other energy sources (geothermal and biomass) join petroleum 
to observe a rise in the estimate of d. Critically, it is discovered that these three 
energy sources have their AR coefficients to be negative, thus being the reason 
for the increase in their d estimates. It is also discovered that the AR components 
are really smaller than when the error term is assumed to observe seasonal AR(1) 
process, but they are all significant. Notwithstanding, long memory is still observed 
since the d estimates still fall within the interval of 0 and 1. Also, the energy 
consumption across all sources are sensitive to seasonality, although the effect 
is higher when the error term is assumed to follow a seasonal AR(1) process.

5.1.	 Model with Structural Breaks

Empirical studies have proved that despite the fact that fractional integra-
tion models are superior to the conventional unit root models in evaluating the 
stationarity properties of time series variables and the level of persistence of 
shocks, they can be bias not only when the series observe seasonal changes, but 
also when there are significant structural shifts or breaks along their time paths. 

TABLE 6
BAI-BERRON BREAK DATES

Energy Source B1 B2 B3 B4

Coal 1983M06 
(10.075)

1995M06 
(14.357)

2011M09  
(15.821)

--------

Natural Gas -------- ------- -------- --------
Petroleum 1981M02 

(17.003)
1990M09  
(53.75)

2001M11  
(6.025)

2008M02  
(8.830)

Nuclear 1980M01
(25.999)

1989M06
(8.409)

1999M05
(6.800)

--------

Hydroelectric 2000M06 
(6.572)

-------- -------- --------

Geothermal 1989M01 
(23.542)

2008M03  
(25.919)

-------- --------

Biomass 1983M01 
(11.006)

1993M08  
(31.846)

2001M01  
(11.592)

2010M03  
(10.773)

Solar 2013M02
(9.070)

-------- -------- --------

Wind 2012M10
(24.537)

-------- -------- --------
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Retrospectively, the energy market is often faced with external shocks from both 
demand and supply sources. These have often affected its consumption at certain 
times. This study thus takes a further step to account for structural breaks. The 
Bai and Perron (2003) test that gives multiple structural break is considered 
to determine the breaks and their timings, after which they are modeled in the 
fractional integration equation to evaluate their significance. The identified 
break dates coincide with certain major world events, especially in the energy 
market. The events include the 1999/2000 Middle-east up-rise due to the series 
of OPEC cuts, 2008 global financial crisis, 2012/2013 Arab springs, 2011-2012 
oil price boom, etc.

Having determined the structural breaks, their significance in the persistence 
level of the energy consumption sources is evaluated. In other words, this study 
further intends to show whether the presence of structural breaks can significantly 
alter (increase or reduce) the level of persistence of the consumption of the energy 
sources. However, nuclear energy consumption is not considered as no break 
dates are established for it. Table 7 reports the d estimates when seasonality 
is not put into consideration. The breaks are not significant for hydroelectric 
power consumption, but are largely significant for others. It is clearly seen that 
although the estimates are still within the range of 0 and 1, they are lower than 
estimates in Table 3 when no breaks are accounted for, especially for coal, 
petroleum, geothermal and biomass energy consumption.

TABLE 7
COEFFICIENT ESTIMATES BASED ON MODEL 2

Energy Source
d (95% 

confidence 
interval)

B1 B2 B3 B4

Coal 0.6446b

(0.53, 0.76)
0.1941***

(2.84)
0.1181*
(1.73)

–0.1925***
(–2.78)

--------

Petroleum 0.3002c

(0.24, 0.36)
–0.1724***

(–8.41)
–0.0325
(–1.53)

–0.0131
(–0.63)

–0.1580***
(–7.39)

Nuclear 0.7516c

(0.68, 0.83)
–0.0228
(–0.27)

0.1480*
(1.72)

0.0985
(1.14)

--------

Hydroelectric Insignificant breaks 
Geothermal 0.6875c

(0.63, 0.75)
0.4452***

(5.16)
0.0441
(0.506)

-------- --------

Biomass 0.5398c

(0.48, 0.60)
0.0836*
(1.75)

0.0745
(1.44)

–0.1687***
(–3.49)

0.0965**
(2.02)

Solar 0.4991a

(0.50, 
0.501)

0.0211***
(7.41)

-------- -------- --------

Wind 0.4984a

(0.49, 0.51)
0.0723***

(8.96)
-------- -------- --------

***, ** and * indicate significance at 1%, 5% and 10% critical levels respectively. a, b and indicate 
models without regressors, with an intercept, and with an intercept and a linear time trend. Values 
in bold indicate significant alterations to the d estimates (level of persistence) from their original 
values in Table 3.
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TABLE 8
COEFFICIENT ESTIMATES BASED ON MODEL 6

Energy Source d (95% confiden-
ce interval) B1 B2 B3 B4 AR

Coal 0.6195b

(0.54, 0.70)
0.1011***

(3.42)
0.0146
(0.49)

–0.0558*
(–1.84)

-------- 0.8785***
(38.40)

Petroleum 0.4365b

(0.38, 0.50)
–0.0685***

(–3.85)
–0.0529***

(–2.98)
–0.0189
(–1.07)

–0.0284
(–1.59)

0.7810***
(29.80)

Nuclear 0.7426c

(0.66, 0.82)
–0.0879*
(–1.87)

0.0630
(1.34)

0.0502
(1.07)

-------- 0.7453***
(26.50)

Hydroelectric 0.7834c

(0.70, 0.87)
–0.1508**

(–2.24)
-------- -------- -------- 0.7002***

(22.90)
Geothermal 0.6206c

(0.55, 0.69)
0.4318***

(5.83)
0.0404
(0.544)

-------- -------- 0.3146***
(8.39)

Biomass 0.4848c

(0.42, 0.55)
0.0599*
(1.71)

0.0997***
(2.71)

–0.1389***
(–3.95)

0.0479
(1.35)

0.5976***
(17.50)

Solar No convergence
Wind 0.4210a

(0.34, 0.50)
0.0094*
(1.74)

-------- -------- -------- 0.8038***
(17.80)

***, ** and * indicate significance at 1%, 5% and 10% critical levels respectively. a, b and indicate 
models without regressors, with an intercept, and with an intercept and a linear time trend. Values 
in bold indicate significant alterations to the d estimates (level of persistence) from their original 
values in Table 4.

TABLE 9
COEFFICIENT ESTIMATES BASED ON MODEL 8

Energy Source d (95% confi-
dence interval) B1 B2 B3 B4 AR

Coal 0.3115b

(0.19, 0.43)
0.2362***

(4.95)
0.1302***

(2.84)
–0.2485***

(–4.59)
-------- 0.4603***

(8.37)
Petroleum 0.6429a

(0.56, 0.73)
–0.1172***

(–3.82)
–0.0198
(–0.61)

0.0119
(0.381)

–0.0593**
(–1.99)

–0.4024***
(–8.35)

Nuclear 0.7197b

(0.65, 0.79))
0.0196
(0.22)

0.1492*
(1.67)

0.1686*
(1.94)

-------- 0.2224***
(4.34)

Hydroelectric 0.2790a

(0.14, 0.41)
–0.1156*
(–1.79)

-------- -------- -------- 0.6132***
(11.50)

Geothermal 0.7511c

(0.66, 0.84)
0.4390***

(5.08)
0.0524
(0.60)

-------- -------- –0.1163*
(–1.91)

Biomass 0.6517c

(0.57, 0.74)
0.0711
(1.45)

0.1234**
(2.32)

–0.1723***
(–3.49)

0.0762
(1.54)

–0.2132***
(–3.85)

Solar No convergence 
Wind 0.4920a

(0.47, 0.51)
0.0606***

(6.21)
-------- -------- -------- 0.4006***

(8.31)

***, ** and * indicate significance at 1%, 5% and 10% critical levels respectively. a, b and indicate 
models without regressors, with an intercept, and with an intercept and a linear time trend. Values 
in bold indicate significant alterations to the d estimates (level of persistence) from their original 
values in Table 5.
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Next, structural breaks and seasonality are simultaneously accounted for 
within the fractionally integrated process. The results are presented in Tables 8 
and 9. Considering the assumption that the residual term µt  observes seasonal 
AR(1), Table 8 shows that the structural breaks are still largely significant. Also, 
AR components are significantly high. The large significance of the breaks and 
the AR components applaud and authenticate their joint modeling in the frac-
tional integration equations. Again, the persistence level is significantly altered 
in 5 energy sources (coal, petroleum, nuclear, geothermal and biomass). The 
persistence becomes higher for nuclear energy consumption, but lower for the 
rest. Turning to the model with non-seasonal AR(1) µt , Table 9, as expected, 
provides that the AR components and structural breaks are significant. Except 
for biomass energy consumption whose place is taken by hydroelectric power 
consumption, the same energy sources whose d estimates are significantly al-
tered in Table 8, still remains altered. However, persistence tends to be higher 
for petroleum and nuclear energy consumption and lower for others. 

6.	 Conclusion and Policy Implications

The long memory behaviour of the energy consumption by source of the 
United States has been examined in this study. For this purpose, the fractional 
integration [I(d)] techniques in its baseline form, as well as its modified form to 
include seasonal effects and structural breaks, have been employed. The main 
findings of this study are that the consumption of energy across all sources 
considered has long memory, and strong seasonal patterns are established 
with significantly high autoregressive components. Also, the structural breaks 
are largely significant, and including them in the analysis alters the degree of 
persistence in most cases. Only in few instances do they not significantly alter 
the persistence level of the energy consumption. This signifies the importance 
of accounting for breaks.

There are policy implications of the findings established in this study. As 
noted by Belbute (2016), the presence of long memory may indicate a very 
strong energy consumption habit, rigidities in technological changes and energy 
substitutes. Therefore, energy policies, such as the granting of subsidies for more 
alternative energy sources, reduced consumption cost for energy sources that 
exhibit less persistence, sensitization on the improvement of energy efficiency, 
etc. will be more effective in ensuring reversion of energy use to its average 
consumption level, should there be shocks. Two or more of these policies can 
be combined depending on how high the degree of persistence.

Also, owing to the importance of energy in the US economy, every sector 
has close link with the energy sector. Therefore, permanent policy stance that 
encourages the consumption of renewable energies tends to contribute to envi-
ronmental safety through the reduction in carbon emissions.
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