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The quantum harmonic oscillator expected shortfall model*
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Abstract

This paper presents a new Expected Shortfall (ES) model based on the Quan-
tum Harmonic Oscillator (QHO). It is used to estimate market risk in banks
and other financial institutions according to Basel IIl standard. Predictions
of the model agree with the empirical data which displays deviations from
normality. Using backtesting, it is shown that the model can be reliably used
to assess market risk.
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Resumen

Este documento presenta un nuevo modelo de déficit esperado basado en el
oscilador armonico cudntico para la estimacion de riesgo de bancos e insti-
tuciones financieras conforme al estdndar de Basilea III. Las predicciones del
modelo son consitentes con los datos del mercado accionario que presentan
desvios de normalidad. Utilizando “backtesting”, se muestral que el el modelo

es fiable para la evaluacion del riesgo de mercado.

Palabras clave: Déficit esperado; riesgo de mercado; Basilea IlI; retorno ac-
cionario; S&P.

Clasificacion JEL: G24, C22, C52, C53.

1. INTRODUCTION

Back in the 1960s, Mandelbrot (1963, 1972) and Fama (1965) showed that
the series of daily returns of securities have a distribution that deviates from
the normal distribution and from the identical and independent distribution
assumption. Fama (1965) assumed that the distribution of price change is ap-
proximately Gaussian or normal, which was confirmed by observations. It was
found that extreme tails of empirical distributions are higher than those of nor-
mal distribution, and four parameter Paretian distribution was introduced to
describe data. Blattnerg and Gonedes (1977) showed that returns distributions
are characterized by fat tails. They considered another family of symmetric
distributions that can consider fat tails. It was Student or t distribution, and
authors concluded that Student model has greater descriptive validity then the
normal distribution. Kan and Zhou (2017) also presented similar findings using
multivariate t distribution with 7 degrees of freedom to model stock returns.
They point out that due to the presence of fat tails, the assumption of normal-
ity must be rejected. Empirical evidence of non-Gaussian properties of stock
market return distribution led to the development of a lot of theoretical models
on this subject. From the econophysics point of view, the Brownian movement
of the classical particles was used to model the stock returns in the first place
(Dragulescu and Yakovenko, 2002; Roumen, 2013; Reddy and Clinton, 2016;
Agustini et al. 2018). Change of the stock price return is modelled as position
change of random displacement of classical Brownian particle in these pa-
pers. The main problem with this model is that lead to Gaussian-type processes
(Madan and Seneta 1990). Traditional economic models were developed to
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better describe the stock return distributions (Linden, 2001; Dragulescu and
Yakovenko, 2002). On the other side, the real data and empirical stock return
distributions show deviations from Gaussian type distributions since Probabil-
ity Density Function - PDF tails decay slower than log-normal Gaussian type
(Sener et. al. 2012; Zikovic and Filer, 2013; Rossignolo, et. al. 2012, 2013,
Radivojevic et al. 2016b, 2017a, 2020; Doncic et al. 2022). Fat tails which
include negative skewness on one side and positive excess kurtosis on the other
side of the center of distribution are the most common types of deviations from
Gaussian type distribution (Ahn et al. 2017).

In the market models based on statistical physics, which try to make the
analogy of the stock market behavior with microsystems in physics, an import-
ant role found quantum mechanics (QM), which naturally inherent statistical
fluctuations via uncertainty principle (Ataullah ez al. 2009). The main problem
in QM is that the potential that describes the interaction of the physical system
(which is used to describe market) with the environment is generally unknown.
To use QM models to describe the stock market return distributions, the ap-
propriate potential is needed (Zhang and Huang, 2010; Haijun and Guobiao,
2015; Wrdéblewski, 2017). The main principle is to make an analogy between
some QM system, e.g. quantum particle (or systems of particles) and stock
price return. In Schrodinger’s nonrelativistic QM of closed systems, the parti-
cle is described with wave functions of particle state. Physically meaning has
a square of the amplitude of wave function, which should describe the PDF of
stock market returns. This is the merging point of stock market returns and the
QM system: there is a need for QM system with wave function, which square
can describe PDF of stock market returns. Closed quantum systems with time
independent potentials lead to stationary states, so some perturbation potential
needs to be introduced to enable time evolution and nonstationary.

It is interesting to note that stock return distributions of stable markets tend
to have Gaussian properties. In general, all markets tend to reach an equilibrium
state (Balvers et al. 2000), and settle to some form of Gaussian-like distribu-
tions shape (Ahn ef al. 2017). Fat tails are one of the most common deviations.
Stock market returns tend to settle in some equilibrium or near-equilibrium
state, which can be described as a true or local minimum of the potential ener-
gy in the physics analogy. A market can be described as some sort of physical
system which is in equilibrium or near equilibrium with its surrounding. Quan-
tum mechanical systems which are isolated can be described with the Schro-
dinger equation in which the parameter that need to be known is its potential
energy or potential. Since the potential is unknown, some reasonable guesses
need to be introduced and substantiated with some real physical assumptions
(Zhang and Huang, 2010). Stock markets returns in general tend to long-run
equilibrium, where returns dissipate around some mean value. It implies that a
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QHO can be used to describe these oscillations, which fluctuate over time, so
first order perturbation theory needs to be introduced. Hence, the aim of this
study is to take advantage of this opportunity.

Among the first was Bachelier (1900), who described the financial assets
price movement using a random walk model, and introduced the concept of
Brownian motion, which is a type of random process that has played a fun-
damental role in the development of modern mathematical finance. From the
point of view of the current paper, random processes in economics can be
transformed into the form of Schrodinger equation (Wroblewski, 2017; Ahn et
al, 2017; Vukovic et al, 2015), which is a fundamental equation in Quantum
physics. For instance, the famous Black-Scholes equation which gives a model
to pricing theory is an instance of Schrodinger equation (Vukovic et al, 2015;
Contreras et al, 2010). It was shown by Vukovic et al, 2015, that starting from
Black Scholes equation, using mathematical transformations, one can get to
the exact form of Schrodinger equation. Phenomena that have the same or
similar mathematical foundations in different disciplines, will have same or
similar physical behavior.

Important property of QHO is that like every bounded quantum system it
has eigenstates and discrete spectrum of energies. Hence QM oscillator can be
described with one of eigenstates or superposition of eigenstates. This practi-
cally means that QHO can be described as linear combinations of eigenstates.
Like classical Brownian particle, QHO in ground state is described with Gauss-
ian distribution. Since stock markets show deviations from Gaussian (negative
skewness and positive excess kurtosis) classical Brownian particle is not quite
suitable for describing it. On the other hand these deviations can be very well
described with higher states of QHO. Eigenstates of QHO are Hermitian poly-
nomials, which can be even or odd. Even states lead to more symmetric distri-
butions and can contribute to the fat tail and lead to higher kurtosis. Odd states
lead to distributions with a larger skewness, (Ahn et al, 2017).

The paper is organized as follows: Section 1 contains the introduction. The
following section gives an overview of the most significant empirical research
in the area of ES models. Section 3 presents the theoretical basis of the possi-
bility of applying QHO for predicting the movement of stock market returns.
In Section 4 presented results of applying QHO. In Section 5, the backtesting
results are presented, analyzed, and discussed. Section 6 summarizes the con-
clusions.
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2. LITERATURE REVIEW

There is an abundance of papers in literature dealing with the improve-
ments of the applicability of different market risk models according to Basel
Commitment rules. All those papers can be classified into two groups. The first
group consists of the papers which try to improve applicability of different
ES models. In this group of papers researchers use a traditional technique for
predicting behavior patterns of assets in financial markets, following known
distributions. Such papers were presented by Barone-Adesi and Giannopou-
los (2001), Pascual et al. (2006), Chen et al. (2011), Brandolini and Colucci
(2012), (2012), Alemany et al (2012), Bee (2012), Radivojevic et al. (2016,
2017, 2020) etc. The second group includes the papers which try to improve
the applicability of completely different models for prediction stock returns.
Those papers are based on artificial intelligence, data mining, machine learn-
ing, and similar concepts for assessing risks to which participants in financial
markets are exposed. Such papers were presented by Scaillet (2003 and 2004),
Fermanian and Scaillet (2005), Atsalakis and Valavanis (2009), Thomaidis and
Dounias (2012), Aguilar-Rivera et al. (2015), Cavalcante et al. (2016), Chong
et al. (2017) Xing et al. (2018), Hiransha er al. (2018), Fischer and Krauss
(2018), Rundo et al. (2019), Nti et al. (2019), Shah et al. (2019), Sezer et al.
(2020), Doncic et al. (2022) etc.

From the second group of papers, one can single out papers that focus on
opportunities of applying solutions from physics. Such papers were presented
by Meng et al. (2016), Agustini et al. (2018), Maruddani and Trimono (2018)
etc. Inspired by a series of studies that successfully used concepts and tools
from quantum mechanics to options pricing (Ye and Huang, 2008; Baaquie,
2009; Bagarello, 2009; Zhang and Huang, 2010; Pedram, 2012 and Cotfas,
2013), Agustini et al. (2018) were use Geometric Brownian Motion model
for stock prices prediction. Like them, Maruddani and Trimono (2018) used
multidimensional Geometric Brownian Motion model to describe stochastic
process of stock price movements. However, despite of the mathematical suc-
cess of quantum-mechanics models for financial instruments, only few studies
have been tried to exploit quantum statistical dynamics relying on open-sys-
tem concepts yet (Meng et al. 2016). The justification for applying solutions
from QM can be found in empirical findings that point to the unsustainability
of the efficient market hypothesis. Empirical findings such as non-Markov-
ian memory (Wan and Zhang, 2008) and fat-tail deviation (Wan and Zhang,
2008, Radivojevic et al. 2020) suggest that the stock market does not satisfy
the classical Brownian motion model (Ye and Huang, 2008). And Meng, et
al. (2015) were among the first to point out the possibility of describing dy-
namical problems in the stock market using a wave function. In this context,
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Meng et al. (2016) were among the first authors who presented the idea of the
possibility of applying the Brownian motion quantum oscillator model. They
showed that the movement of financial asset returns can be described by the
Markovian Klein-Kramers equation. However, they focused only on predicting
the movement of stock prices, without considering the possibility of applying
the model for assessing market risk. Original idea from QM, that the more
we learn of the coordinate the less we know the momentum (and vice versa)
(Cohen-Tannoudji et al. 1992), can be applied to stocks because the more we
know the stock price the less information we can use to estimate the trend of
it (Meng et al. 2016).

In QM this is the Heisenberg uncertainty principle, which states that one
cannot with certainty know position of particle and its momentum or speed.
This principle has its analogy in the economy. As Ye et al, 2008 stated if all
the people know the price value, even though the price has deviated, it will
turn back to the value swiftly and never start to fluctuate again. In this sense,
precise knowledge of stock price will harden estimates of its change (see Ye et
al, 2008 for details).

3. THE THEORETICAL BASIS OF THE POSSIBILITY OF APPLYING QHO FOR
PREDICTING THE MOVEMENT OF STOCK MARKET RETURNSW

In case of harmonic potential QM solutions of the stationary Schrodinger
equation are already known and are

mo )" 1 mo | 5o
o (2] gl e
n.

where H ( }m_wa are Hermite polynomials. Expression in equation 1
! h
can be simplified by introducing dimensionless variable & = m7a)x . In phys-

ics, x is the coordinate of the observed particle. This physical quantity has its
analogy in the stock market model x =Ins, which is logarithmic stock price
return, where s is stock price (Meng et al, 2016). Parameter m is the mass,
while @ is the angular velocity of the quantum particle, % =1.05457J -5 is
reduced Planck constant and n=0,1,2,... is positive integer number. Angular
velocity is related to the energy of the quantum particle as

) E, :En+%jhw.
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According to Ye and Huang, 2008 and Meng et al 2015 and 2016 mass of
particle correspond to inertia of the stock, energy of the particle corresponds to
trading volume of the stock, while v, (x ) , which is called wave function, has
special properties. As it was stated earlier in the text, the wave function doesn’t
have physical meaning in physics, but its square of amplitude represents the
probability density of finding a particle with coordinate x. Square of amplitude
of the particle corresponds to the probability density distribution of the stock
price (Ye and Huang, 2008 and Meng et al 2015; Meng et al 2016).

General solution of stationary Schrodinger equation for the potential of the
harmonic oscillator can be constructed in form of infinite expansion over Her-
mite polynomials or to be more precise over eigenstate wave functions given
by equation 1:

3) v(x)=2 cw, (%),

Expansion coefficients have important physical implications: its square
gives the probability that the system can be found rn-th state.

Since stock returns change over time, we need to introduce some small po-
tential, which acts as a perturbation on our quantum system and changes states
over time. If the perturbation is small, we could expect that eigen states are not
changed due to the influence of small potential, and in first-order perturbation
theory we could expect that the state of the system can be described as

@) ¥(xi)= ¢ (v, (x)e

Perturbation leaves eigen states unchanged, but consequently, expansion
coefficients are time dependent.

Let us assume that stock return distribution can be described as the proba-
bility distribution function of the QHO. Many authors use QHO to model stock
return distributions (Tingting and Yu, 2017; Jaroonchokanan and Suwannay,
2018). Since the market has a tendency toward an equilibrium state (Menga et
al. 2016), with some amount of fluctuations, it is quite reasonable to assume
that model of QHO is mostly in the ground state, which has Gaussian shape
properties, with additional impurities of excited states, which lead to the fat
tails and non-Gaussian properties. Some form of the superposition state could
be a real representation of the market model (Menga et al. 2016). General state
function can be represented as

5) v(x) =X, (v, (%),

where expansion is limited to some k-th excited state.
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Let us further build our model. We can take stock returns of some real
markets for three years period, represented by 750 daily stock price returns.
Our goal is to use the first two-year period to build the QHO model and predict
stock returns of the third year.

4. MODEL ESTIMATION

At start, we take the first year of stock returns to construct initial PDE of
the real market. This function needs to be fitted with the square of the QHO
superposition state function in the form

6) y(x)=3" c,(0)y,(x)

In the expansion series, let us assume the first ten members (greater mem-
bers are neglectable small, which will be seen in result part of the paper).

It is important to notice that the PDE of the stock return should be fitted
with the square of the function in explicit form

L mo 1/4 1 e
©) W(é)—Zn_ocn(O)[ ,rh) N

In our QHO model all parameters are uncertain, i.e. mass m and angular
frequency o .

These parameters should be extracted from the data of the real market. To
do so, let us first introduce function

(8) f(x) = (ijoaan ()c))2 e

which will be used to fit stock market PDE. This is necessary, since it is
important to find an appropriate function which can have enough degrees of
freedom, so the iteration procedure of finding fitting coefficients can lead to
minimal residuals. Finding the best fit is procedure to find ten coefficients and
an additional k unknown coefficient which is in correlation with all ai coef-
ficients. Linear regression procedure of finding best parameters starting from
best guess initial values of coefficients, lead to great accuracy of fit. Here, the
fitting procedure was done not over the variable x, but instead, independent
variables are Hermite polynomials H, (x) This complicates the procedure a
bit since function f(x) need to be minimized over terms of Hermite polyno-
mials.

To perform fit over Hermite polynomials as independent variables, a least-



The quantum harmonic oscillator... / Markovic, Radivojevic, Ivanovic, Radisic, Novakovic 241

square fit method was used. This method is based on minimizing X * function,
or minimising expression er , where 7, are residual, or differences between
original data point and its fitted value. In order to perform a such fit, initial
values of the fitting parameters need to be set. The parameters can be arbitrary,
or based on the intuitive knowledge of the fitting curve. Here, we can make
assumption that ground level of the QHO is dominant and have contribution
about 90% (initial guess), which will give expansion coefficient of the ground
level /0.9 ~0.95. Excited states of the QHO are abundant with less proba-
bility, and expansion coefficients in equation 3 to 7 need to fulfill constraint
Y. ¢} =1. Mathematica Wolfram provide fitting algorithm (Wolfram, 2022)
used to perform fitting over Hermite polynomials in the above described way.
Fitting procedure is based on minimising ¥ ® function over paremeters ¢, .
Afterwards, it is necessary to relate «, fit coefficients in eq(8) with ¢, co-

efficients in eq (7). To do so, in function f(x), Hermite polynomials need to
be factored, in form H, (kx) due to correspondence with eq(7). « = /m7w is

determined from fit, and x can be trivially factored in form H (K"Kx) . If we

introduce y =", we can transform term H, (ykx) to a,H, (x) as following

PR ACE
oor|n. ; i 2 j '
©) S () (zjgf’ (1ex) =
> AH, (k) '

Now we can expand right side of equation (9) and collect coefficients A,
beside H, (Kx) members. Finally, our state expansion coefficients are

(10) ¢ =A [ij N

T

Now our state can be expressed in terms of known coefficients
1

(1) W(x):zj_ocn(’f—j“ L H (kx)e ® .

T 2"n!

Following the above procedure, PDF from stock return empirical data can
be created, and fitted with Hermite polynomials.

To build a predictive stock return model, the first year period, i.e. the first
250 data points from the stock return values, are used to generate PDF which
represents the initial state of our QHO. The natural states of the real model are
not stationary and are changing over time. To explain non-stationarity, pertur-
bation is introduced, resulting in the time-dependent wave function given by
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eq(4). To obtain time dependence of expansion coefficients in eq(4) second
year period of stock return data is used. The initial state of QHO is created
from 250 data from the first-year period, while the next state is created using
data from the 2nd to the 251st day. In this way, the window consisted of 250
data points representing one state is created, and this window is moved forward
for one day. By continuing procedure of fitting PDF with QHO, wave functions
and time expansion of coefficients in eq(4) can be found, using the method of
rolling window. At this point, it is necessary to state that the mass of the QHO
is one parameter introduced in fitting equations. By finding the best fit, this pa-
rameter changes in rolling windows since it is not fixed. To fix the mass of the
QHO, second-year data of stock return distributions were used and fitted using
the rolling window method. Afterwards, the most probable mass is extracted
as a parameter. Now fitting procedure must be repeated for all second-year
stock return data to obtain new fitting coefficients, which correspond to the
fixed mass of the QHO. At the end of this procedure, coefficient of expansion
in eq(4) are known.

If we can assume that time evolution of expansion coefficients, ¢, (t) , are
due to some weak perturbation, it is reasonable to suggest that this evolution
can be extrapolated to a future time. Uncertainty of prediction increases over
time, but for us, it is important to find PDF for the following day, related to the
present one. It is enough to use a two-year period (500 data points) to predict
one day after two-year period (501 data point). For the following day (502 data
point) we do not need to predict expected stock returns from the first 500 data
points. Instead, we can use 501. data point and repeat procedure with building
PDF, fitting empirical data and predict outcome for just next day. This repeat-
ing procedure can lead us through the whole third year, and predictions of the
model can be compared with real data. It is important to note that this model
is probabilistic, and by predicting time series coefficients, c, (t ) , for the fol-
lowing day, we are predicting tomorrows wave function, (x) , of QHO. This
information does not give us data values that will occur the following day, but
rather PDF of the following day (PDF = |l// (x)|2)'

5. THE RESULTS OF QHO MODEL APPLICATION

To verify presented model, we need to start with real data of the stock re-
turn. These data are presented on the Fig 1 for the three years period. The data
used were the daily logarithmic returns of the Standard and Poor stock index,
which was used in Christoffersen (2011) for VaR estimates. The returns were
collected for the period between January 25, 1997 to December 30th, 1999,
These empirical data are starting point of building model, following Method-
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ology procedure.

FIGURE 1
STOCK RETURN VALUES FOR THREE YEAR PERIOD - 750 DATA POINTS FOR THE
S&P INDEX FOR THE PERIOD BETWEEN JANUARY 2ND, 1997 TO DECEMBER 30TH,
1999

Stock return

0.04

002 T e e T

-0.04

The first year of the three-year period is used to build a PDF of the stock
return. In this function, all information about the behavior of the stock market
is hidden and needs to be extracted. PDF is created by discretizing stock return
values and counting the number of data that falls into the correspondent bin.
To have proper distribution properties (i.e. Probability Density Function), dis-
tribution needs to be normalized to the unit. Connection with QHO is that PDF
generated from real data gives probabilities of measuring QHO with a given
x coordinate. On the other side, this PDF of QHO is equal to the square of the
quantum wave function which describes a state of QHO. QHO is described
with real functions and written in the general form given by eq (7) and can
be used to fit empirical PDF. The result within the range of empirical data is
shown in Fig 2 for one 250 days period. Figure 2 included a fit with Gausian
and Pareto type IV function. Gaussian function describes the random walk of
Brownian particles, while general Pareto distribution — GDP is used to approx-
imate asymptotic distributions of extreme values.

From Figure 2 the QHO function can more realistically describe empirical
data. Figure 3 shows residuals in the fit procedure for three mentioned func-
tions. QHO fits data better compared to Gaussian and GPD distribution (Pear-
son N., 2002). One of the reasons is in the fact that QHO has greater degrees
of freedom, and odd members in the expansion can consider skewness, while
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even one capture kurtosis. In this way, any arbitrary function can be fitted. If
not with given degrees of freedom, then with more degrees of freedom, which
can be easily added. Reason for this lies in the fact that the QHO function is a
kind of expansion in series, but not over the variable, but over Hermite polyno-
mials that depend on the variable.

FIGURE 2
DOTS-EMPIRICAL PDF OF STOCK RETURNS FOR ONE YEAR PERIOD; DASHED LINE
— GAUSSIAN FIT; DOTTED LINE — PARETO TYPE IV DISTRIBUTION FIT; FULL LINE —
FITTED FUNCTION OVER THE SUPERPOSITION STATE OF QHO

40

- -

-0.06 -0.04 -0.02 0.02 0.04.

FIGURE 3
GRAY DOTS — RESIDUAL FROM GAUSSIAN FIT; LIGHT GRAY DOTS — RESIDUALS
FROM PARETO FIT; BLACK DOTS - RESIDUALS FROM QHO FIT.

-4
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It is interesting to note that fitted QHO function does not diverge in the
region out of the fitted data (fitting function is defined in the region (—oo,+oo))
and the norm of the fitted function given at Fig 2 is

v (x)[ dx=0.991002

(12) |

The function has a norm, which is less than one per cent smaller than the
unit, which leads us to the conclusion that the superposition state of QHO
is natural state of stock return. This is the case with all 250 PDF functions
generated from a two-year period of stock returns. A number of iterations and
precision goal of the fitting procedure are set in a way, that norm of all func-
tions needs to be in the range of one per cent around the unit. Values of the
coefficients of the fitted wave functions from Fig 2 — initial state, and their
squares, are given in Table 1.

TABLE 1
FITTING COEFFICIENTS AND ITS SQUARES FOR THE EMPIRICAL PDF OF FIRST
YEAR PERIOD OF STOCK RETURNS

C, 0.984902 C; 0.970032

C, 0.0603988 c 0.00364801
C, 0.125271 c; 0.0156929
C, -0.0135641 c; 0.000183984
C, 0.0268013 c; 0.000718308
C, 0.00142965 C: 2.0439:10°
C, 0.0274061 C; 0.000751093
C, 0.0012143 c; 1.47453-10°
C, -2.2201:10° (o 4.92883-10°"2
C, -8.63369-10* C; 7.45406-10"5

Looking at the values given in Table 1, QHO is in a superposition state,
where the most probable is the ground state. Excited states give a smaller
contribution to the overall wave function. This fact has physical implications.
Ground state of QHO has Gaussian shape, and the tendency to Gaussian-like
stock returns of the markets is conserved. Excited states are odd and even and
each gives contributions to different properties of stock markets return (skew-
ness and kurtosis). Going further to higher excited states will give even smaller
contributions and can be neglected.

Following the fitting procedure of rolling window for the second year of
stock returns wave functions which represent the state for every day are ob-
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tained. These functions still have no significant physical meaning, since they
present only the mathematical best fit of the data. As the fitting parameter in

every fit, the quantity x = ,m7a) of the oscillator arises, and it has different

values in each fit iteration. For the harmonic oscillator, this value needs to be
constant. Idea is to find the best fit in each iteration and then choose the most
probable one. Figure 4 gives the histogram of the occurrence of the values of
Kk . The most probable value is 49.684 m-1, and this value is fixed as the param-
eter of the oscillator. At the first look at the Fig. 4 some paradox fact arise - the
negative value of parameter x . One need to keep in mind that these values still
have no physical meaning, rather than pure mathematical products of the crite-
ria for the best fit. Another thing that can be noticed is that histogram has two
modal properties. Again, this is pure mathematical property of accumulating
possible values around the two values. The presented model does not include
two coupled oscillators, nor the changeable mass of the oscillator. Hence, the
most probable value has been chosen. Also, the occurrence of negative mass
has no physical implications and needs to be rejected.

FIGURE 4
HISTOGRAM DISTRIBUTIONS OF OCURRENCE OF DIFFERENT VALUES OF
CONSTANT Kk

frequency

35

At this point with the fixed mass of the oscillator, the fitting procedure
can be repeated from the beginning, while this time parameter x is no more
changeable. Finding best fits leads us to different values of expansion coeffi-
cients in eq. (6). For the second-year window of data, 250 values of expansion
coefficients are obtained. Their values are presented in Figure 5.
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The perturbating potential is unknown, and possible form of time-depen-
dent function that expansion coefficients should have been undetermined. This
led us to use polynomial series expansion and assume that power series con-
sisting of a few first members will be a good approximation of general func-
tion. Each expansion coefficient is now fitted with a time-dependent function
in the form of

(13) C,(t)=A+Bt+Cr’ + D’ + Et*

Fitting functions for each expanding coefficient C, (t) are presented in Fig
5 for rolling windows of the second year of stock returns. These functions are
then used to calculate the expanding coefficients off the first day of the third
year period of the stock returns, which is at this point an unknown variable.
This enables us to write down wave function for the unknown tomorrow data,
determine PDF and predict tomorrow’s outcome with a certain probability.
Predictions can be extrapolated to a future period, greater than one day, but
uncertainty can be large. Instead, we can wait for the empirical value for the
next day and repeat the above procedure to obtain the wave function for the
following day. Since empirical data in our model are known for a whole three-
year period, we iteratively repeated the procedure to predict outcomes for the
whole third year.

FIGURE 5
TIME EVOLUTION OF EXPANSION COEFFICIENTS FOR THE SECOND YEAR PERIOD
OF STOCK RETURNS
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To validate our model, predicted mean values of expected stock rerun with
limits of one standard deviation are presented in Fig 6 and compared with em-
pirical data. To calculate the standard deviation

(14) o =y{x")—(x*),

mean, (x) and mean square values, (x) need to be calculated
(15) () =[ "y xydx and () = [y 2y,

where asterix refer to complex conjugation. These operations doesn’t
change real functions.

Since PDF distributions are roughly Gaussian shape distributions, the in-
terval of one standard deviation covers approximately 68% of the whole range.
It is expected that two-thirds of the whole data fall into the presented region
in Fig 6. Newer the less only 4% of data is outside of the region. Sock return
distributions for data used in the presented model have negative skewness and
fat left tail and distributions are asymmetric around the mean value. This is the
reason why more data are below the mean curve in Fig 6.

FIGURE 6
STOCK RETURN DATA IN THIRD YEAR — DOTS; PREDICTED MEAN — FULL LINE;
STANDARD DEVIATION INTERVAL AROUND MEAN - DASHED LINE; FOR THE
PERIOD BETWEEN JANUARY 2NP, 1997 TO DECEMBER 30TH, 1999

data
0.06
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A powerful tool in Quantum Mechanics are selection rules that can be de-
rived from wave functions, determine possible transitions between quantum
states and give transition probabilities. This could limit the possible outcomes
and better predict tomorrow’s stock returns. For the derivation of selection
rules, an exact form of perturbation potential is needed. At this point, the
best-predicted value of tomorrow’s outcome can be obtained using the tradi-
tional formula

(16) Pan=Ftpo

where P, is tomorrow’s stock return, P is stock return at present day p
is the quantile that gives confidence interval (taken to be unit) and o is the
standard deviation calculated using the predicted wave function for tomorrow
outcome. Eq (16) has great importance, since implies that tomorrow’s outcome
is directly related to today’s stock return values. On Figure 7 are presented
predicted outcomes given with full line, while empirical tomorrow’s outcome
is plotted with gray line. It is of great importance to notice that outcomes do
not falls out of the predicted interval.

FIGURE 7
PREDICTED OUTCOME OF STOCK RETURN — FULL BLACK LINE; EMPIRICAL
STOCK RETURN - FULL GRAY LINE; FOR THE PERIOD BETWEEN JANUARY 2ND,
1997 TO DECEMBER 30TH, 1999

data

0.10

0.05

days

-0.05
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6. BACKTESTING MODEL ACCORDING TO BASEL III STANDARDS

The obtained data were used to estimate the Expected Shortfalls (ES)
according to Basel III standards (Bank for International Settlements, 2013).
More precisely, the ES are calculated for the one-day-ahead horizon for the
period from January Ist, 1998, to January 1st, 1999, according to the Basel III
standard, and for the period from January 1st, 2008 to January 1st, 2009, which
was during an economic crisis, Figure 8.

FIGURE 8
PREDICTED OUTCOME OF STOCK RETURN - FULL BLACK LINE; EMPIRICAL
STOCK RETURN - FULL GRAY LINE, FOR THE CRISIS PERIOD FROM JANUARY 15T,
2008 TO JANUARY 15T, 2009

data

0.10

-0.10

The ES estimates were made for the confidence levels of 97.5%. Since
VaR does not fulfil all the characteristics of coherent risk measures, the Ba-
sel Committee has proposed fundamental changes in the regulatory treatment
of financial institutions’ trading book positions (Kellner and Rosch, 2016).
Among other things, the replacement of 99% VaR with the 97.5% expected
shortfall (ES) for the quantification of market risk is recommended (Radivo-
jevic et al., 2019; Doncic et al., 2022). The rest of the observations were used
as the resample observations needed for the ES starting values. At the same
time, to answer the question of whether the model contributes to the improve-
ment of risk assessment, i.e., whether the model gives better results compared
to traditional risk models, the performance of the model was compared with
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the performance of three ES models: GARCH models under the assumption
that innovations follow the Student’s T, GED and Skewness GED distribu-
tions. Models were chosen given in the mind results of studies conducted by
Radivojevic et al. (2015) and Rossignolo et al. (2013, 2012). The maximum
likelihood of the estimated parameters of the GARCH models are given in
Table 2. More precisely, in the first part of the table, the estimated parameters
of the GARCH models for the period January 1st, 1998, to January 1st, 1999,
are given, while in the second part of the Table 2 the estimated parameters of
the GARCH models during the period of the economic crisis in 2008 are given.

TABLE 2
THE ESTIMATES OF THE PARAMETERS OF APPROPRIATE GARCH(1,1) MODEL
DURING REGULAR MARKET CONDITIONS

Type of GARCH GARCH(1,1) with GARCH(1,1) with GARCH(1,1) with
model Student's t GED Skewness GED
0.066 (0.004) 0.082 (0.001) 0.081 (0.003)
0.873 (0.000) 0.851 (0.000) 0.860 (0.000)
0.000 (0.023) 0.000 (0.025) 0.000 (0.027)
-0.113 (0.045)
n 7.754 (0.000) 1.479 (0.000) 1.515 (0.000)
Log- likelihood 2322.90 2318.08 2320.70

During conditions of the crisis

Type of GARCH GARCH(1,1) with GARCH(1,1) with GARCH(1,1) with
model Student's t GED Skewness GED
0.114 (0.000) 0.107 (0.000) 0.105 (0.000)
0.899 (0.000) 0.895 (0.000) 0.895 (0.000)
0.000 (0.226) 0.000 (0.137) 0.000 (0.133)
-0.116 (0.240)
n 4.610 (0.000) 1.166 (0.000) 1.180 (0.000)
Log- likelihood 2378.93 2381.70 2385.40

Notes: p-values are given in parentheses

Presented models did not produce any ES breaks, which implies that the
models potentially can be reliably used to assess market risk according to the
requirements of the Basel III standard. However, this conclusion can only be
made based on backtesting. Unlike VaR backtesting, ES backtesting is signifi-
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cantly more complex (Doncic et al. 2022). This is the reason why the Basel III
standard is not the prescribed manner of backtesting the validity of ES assess-
ments. For that purpose, the in this paper we used two tests Berkowitz’s test
(LRB) (2001) and Acerbi and Szekely’s (2014) first method (Z1). Berkowitz
(2001) presented a test based on the Levy Rosenblatt transformation that can
be mathematically presented as follows:

17) LR, zz[lnL(u =,,,0° ZO'ML)—lnL(/,t =0,0° :lﬂ .,

where LRp is the Berkowitz’s likelihood ratio. Berkowitz’s ES back test
is the test that tests a joint hypothesis of zero mean (u) and unit variance (),
while ( fi,,) and (5, ) are (u) and (%) estimates obtained using maximum
likelihood.

The LRp test is asymptotically distributed as 2 with two degrees of free-
dom. Berkowitz’s test compares the shape of the forecasted tail of density to the
observed tail. Any observations that did not fall within the tail were truncated,
noting that the threshold was defined as follows: TH = max{ ES,,ES,,...ES, }
Since the Berkowitz test validity is disputed in the case of a relatively small
number of exceedances, one of the authors in (Radivojevic et al. 2019) pro-
posed the use of bootstrap simulation, where F is the unknown distribution of
the estimator 0% . Thus, Berkowitz’s ES backtesting based on bootstrap simu-
lation as presented (Radivojevic et al., 2019) was used in the paper. In fact, the
estimation of the unknown density F of our ES estimates was used by repeating
the simulations by the appropriate models several times'. The number of boot-
strap repetitions is determined according to the Andrews and Buchinsky pro-
cedure (Andrews and Buchinsky, 1997). Determining the bootstrap repetitions
number is particularly important in this case because the sample of the breaks
utilized in obtaining a single ES estimate is a small fraction of the number of
draws. The procedure for calculating the p-value is then continued by analogy,
as previously described. The results are given in Table 3.

Given the limitations of Berkowitz’s test, Acerbi and Szekely’s first
method was also used to test the model’s validity. Acerbi and Szekely de-
fined the null hypothesis: H, : Pl[”] = E[“] for V(t) against the alternatives

H,: ES'; (X) >ES_, (X)forV(t)and> forsome(t) @, (X) >VaR,, (X)

According to the bootstrap method (Efron and Tibshirani, 1993), we generated multiple new sam-
ples from the data sample and calculated the value of the estimator OF in each sample. The size
of the data-sample, of the exceedances, is known as it is a direct function of the number of trials
in the bootstrap simulation and the probability level used in defining the ES. We have chosen a
level of error PDB equal to 10% and a confidence level equal to 95%, the initial value of bootstrap
repetitions, initial excess kurtosis of the sample of ES repetitions set to zero.
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for¥(t) wherein Ft is the realized distribution of returns, ]3;["] is the condition-
al distribution tail of the distribution of P below the quantile o. We can write
this as R[“] (x)= min(l,R (x)/a).

E/S; (X) and @ (X) are the sample ES and VaR from the realized
returns. Under the null hypothesis, the realized tail is assumed to be the same
as the predicted tail of the return distribution. The alternative hypothesis rejects
the ES without rejecting VaR. To test the null hypothesis, Acerbi and Szekely
defined the following test statistics:

> (x,1,1ES,,)
= 41
Nt
where X denotes the vector of realized returns (X;, X5,...,X7), I, — the in-

(18) z (X):

dicator function /, =1 that indicates the backtesting exceedance of

(Rp <VaR,(R))
. . . T
VaR for the realized return X in the period ¢, and N, = Z,Jr is the number
of the exceedances.

The simulations from the distribution under HO were used to test for sig-

nificance in the above method. More precisely, we followed the steps below:

1)  simulate Xt" from P, forall randi=1,2..., M; where M is a suitably
large number of scenarios.

2) for every i, compute Z' =Z (X’ ),i.e., compute the value of Z; using
the simulations from the first step; oy (x)
3) estimate the p-value as P = ZT
served value on Z;. =

4)  we conducted the test for a confidence level of 95%.

, where Z(x) is the ob-

The results of this test are shown in Table 3.
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TABLE 3
BACKTESTING RESULTS DURING REGULAR MARKET CONDITIONS
QHO GARCH(1,1) with GARCH(1,1) with GARCH(1,1) with
Student's t GED Skewness GED
LR, 0.123 0.210 0.119 0.301
Z, 0.144 0.172 0.144 0.106
RMSE 0.038 0.052 0.046 0.042
Backtesting results during conditions of the crisis
QHO GARCH(1,1) with GARCH(1,1) with GARCH(1,1) with
Student's t GED Skewness GED
LR, 0.154 0.056 0.211 0.177
Z, 0.122 0.098 0.381 0.428
RMSE 0.075 0.156 0.107 0.082

The p-values were obtained by applying 10.000 simulations. The test was
conducted for a confidence level of 95%. According to the results shown in
Table 3, it can be concluded that all models successfully passed both tests.
Interestingly, no cluster of ES breaks was recorded in any simulations. To an-
swer the question of whether the model contributes to improving the risk as-

> |R: - Es?|
255
to compare the model performances with the performances of selected mod-
els. RMSE results are given also in Table 3. Based on the RMSE results, it
can be clearly seen that the model generates smaller deviations, which means
smaller capital burdens for banks. Hence, it can be concluded that the model
contributes to the improvement of the traditional ES model. These results were
obtained under regular market conditions. In the conditions of the crisis, the
results are shown in the second part of Table 3. The results, also show that the
model generates better risk assessments. This means that the model contributes
to the improvement of traditional models and conditions of high volatility. A
comparison of models has been also performed in the context of the RMSE of
the first four moments of the distribution. The results are given in Table 4 . The
results show that the model produces better risk estimates in all four moments
of the distribution compared to traditional models. According to Radivojevic et
al. (2019), it is clear that in the case of the GARCH model, the assumption of
innovations distribution is more important than model specification. In other
words, the assumption that is more compatible with real conditions leads to a
better-performing model. Since the Student t distribution has a higher degree of

sessment, the root mean-squared error ( RMSE = ) was used
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freedom parameter than the GED distribution, it was expected to better capture
the kurtosis of the return’s distribution, especially in crisis conditions, which
means that the GARCH(1,1)-Student t model is better equipped to handle ex-
treme events in the data. On the other hand, the GED distribution is better suit-
ed for modeling skewness because it has a flexible shape that can be skewed
in either direction. This is because the Student t distribution has a symmetric
shape, whereas the GED distribution allows for skewness. In situations where
the data exhibits skewness, the GARCH(1,1)-GED model may provide better
estimates of the dispersion of stock returns. However, theoretical distributions
are not fully able to capture empirical phenomena. As the number of extreme
cases increases, different variants of Garch models produce larger deviations.
They are less able to predict the probability of extreme returns occurring, as
well as the magnitude of these deviations. However, it is characteristic of the
used variants of the Garch model that it is not possible to make a universal
conclusion about which variant is better from the aspect of smaller deviation
in moments of the distribution. It is evident that their performance weakens
in crisis conditions, but a general conclusion cannot be drawn about whose
performance will weaken the most. On the other hand, in the case of the QHO
model, the finding showed that it better captures the occurrence of extreme
outliers, as well as the probability of their occurrence. This is from reasons
because the quantum oscillator provides information about the current trend
and momentum of the security.

TABLE 4
THE RESULTS OF COMPARISON OF MODELS IN TERMS OF THE RMSE OF THE FIRST
FOUR MOMENTS OF THE DISTRIBUTION

QHO S&P Garch(1,1)- | S&P Garch(1,1)- | S&P Garch(1,1)-
student t GED Skewed GED
Mean 5.25E-05 1.89E-04 5.47E-05 1.30E-04
Standard Deviation 0.007 0.004 0.011 0.011
Kurtosis 1.104 1.652 1.726 2.080
Skewness 0.801 0914 0.906 0.924
Conditions of crisis
QHO S&P Garch(1,1)- | S&P Garch(1,1)- | S&P Garch(1,1)-
student t GED Skewed GED
Mean 5.37E-05 1.99E-04 5.50E-05 1.40E-04
Standard Deviation 0.011 0.011 0.011 0.011
Kurtosis 1.297 1.865 1.977 2.291
Skewness 0.920 0.921 0.947 0.929
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7. CONCLUSION

First order of time dependent perturbation theory is applied on QHO model
of stock market returns for the market with non-Gaussian properties. Semiem-
pirical approach is introduced, since perturbating potential is unknown, to ob-
tain series of time dependent coefficients of QHO wave functions. Fitting pro-
cedure over Hermitian polynomial as the independent variables is introduced
and enables good fit of empirical data within all second year period of stock
returns. In summary, this method enables prediction of tomorrow’s outcomes
of stock return. Real tomorrow’s outcomes show no fallout from predicted
ranges within confidence interval of one standard deviation.

In the context of meeting the model validation rules defined by the Basel
III standard, the model was tested using Berkowitz’s ES backtesting based on
bootstrap simulation and Acerbi and Szekely’s first method. The model pro-
vided satisfactory results. As not only the number of exceedances but also the
size of the loss is relevant for the bank, it is important to allow for this criterion
when comparing the models. Unfortunately, due to the scope of the work, no
such comparison was made with other ES models. For the results to be compa-
rable, for this reason, the data used by Christoffersen were taken.

Model presented in the present paper uses Harmonic oscillator potential,
which tends to return the position of the particle towards equilibrium state. In
economic terms this implies that stock-markets have the ability of self-correc-
tion of stock market returns toward equilibrium. At first glance, it seems that
the model can be applied onto markets which are autocorrelated. This would
be true for the classical model of the harmonic oscillator, where simple random
movement around equilibrium position is described. Considering QHO, this
problem is removed, since arbitrary deviation from equilibrium state can be
described, even oscilations around new equilibrium state. This can be done by
taking into account superposition quantum states, where displacements from
equilibrium, which corresponds to pure ground state of QHO can be described
with higher quantum states of the particle. Higher QM states are described
with higher members of the wave function, i.e. higher orders of Hermite poly-
nomial members in equation 3. For very unstable markets, where stock returns
have a long-term tendency of increasing or decreasing, higher order polyno-
mial members will have greater contribution, and larger values of coefficients
in Table 1. From a theoretical point of view any stock return distribution can
be expanded over infinite numbers of Hermite polynomial members. The only
practical question is how fast convergence will occur, and after which order of
member series infinite expansion can be truncated. For the crisis period, it was
shown that taking into account the first 10 members, stock returns can be well
modeled.
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Further validation of presented model requires its application on developed
and undeveloped markets, so that its general applicability can be verified. It is
also important to compare time series of expansion coefficients with the same
obtained using different markets in order to check if there is some universal
pattern. This will imply that there is some common perturbating potential that
can be applied on various stock markets.

The existence of agents whit heterogeneous beliefs and behavioral rules,
which may change over time due to social interaction and evolutionary selec-
tion, points to the need to respect the views of Dieci and Xe (2018) and Adam
et al. (2016). The consequence is that their expectations may be different than
what would be expected under the assumption of a rational investor. This have
to be considered when determining the factors that affect the volatility of re-
turns. For this reason, future research into the application of the quantum oscil-
lator should include how to incorporate these factors into the model.
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